TEORIAS E FILOSOFIAS DE GRACELI 175

 


quarta-feira, 3 de abril de 2019



teoria cinética dos gases no SDC Graceli.





De acordo com a teoria cinética dos gases um gás ideal é constituído por um grande número de pequenas partículas (átomos ou moléculas), que estão em constante e aleatório movimento. Essas partículas que se deslocam rapidamente e colidem constantemente umas com as outras e com as paredes do recipiente que contém o gás. O volumeocupado pelo gás é muito maior do que a soma dos volumes das partículas, de modo que a magnitude das forças intermoleculares é muito pequena.[1] Nesse modelo teórico, pelo fato de encontrarmos um número muito grande de partículas por unidade de volume (1020 partículas por cm³)(sob condição de gás ideal), existem hipóteses impostas que representam o que deve acontecer, em média, com as partículas do gás.[2][3]

    História

    Hydrodynamica - capa frontal
    Em 1738, o físico matemático Daniel Bernoulli, publicou o livro Hydrodynamica, que lançou a base para a teoria cinética dos gases. Nesse trabalho, Bernoulli posicionou seu argumento, ainda sólido até a atualidade, que os gases consistem em um grande número de moléculas se movendo em todas as direções, onde elas colidem entre si e esse impacto causa uma pressão na superfície de contato que podemos sentir. Como exemplos, podemos citar o que nós sentimos como calor, que corresponde simplesmente a energia cinética do seu movimento. A teoria não foi imediatamente aceita, em parte por causa da conservação de energia que não estava bem estabelecida, e ainda, não era óbvio aos físicos que as colisões entre as moléculas poderiam ser perfeitamente elásticas.
    Outros pioneiros da teoria cinética foram Mikhail Lomonosov (1747),[4] Georges-Louis Le Sage (1818),[5] John Herapath (1816)[6] e John James Waterston (1843),[7] que ligavam suas pesquisas com o desenvolvimento de explicações mecânicas da gravitação. Em 1856 August Krönig (provavelmente depois de ler um artigo de Waterston) criou um modelo simples de gás-cinético, que considerava apenas o movimento de translação das partículas. [8]
    Em 1857 Rudolf Clausius, de acordo com suas próprias palavras, independentemente de Krönig, desenvolveu uma similar, porém muito mais sofisticada versão da teoria que incluia o movimento translacional das moléculas, e, ao contrário de Krönig, incluia também o movimento rotacional e vibracional das moléculas. Ele introduziu, neste mesmo trabalho, o conceito de livre caminho médio de uma partícula. [9]
    Em 1859, após ler um artigo de Clausius, James Clerk Maxwell formulou a distribuição de Maxwell de velocidades moleculares, que deu a proporção de moléculas com uma determinada velocidade em um alcance específico. Esta foi a primeira lei estatística na física. [10] Em um de seus artigos Maxwell afirma: "nos é dito que um 'átomo' é um ponto material, envolvido e cercado por 'forças potenciais', e quando uma 'molécula flutuante' chocam-se contra um corpo sólido em sucessão constante causa a chamada pressão do ar e dos outros gases."[11]
    Em 1871, Ludwig Boltzmann generalizou a realização de Maxwell e formulou a distribuição de Maxwell-Boltzmann. Além disso, a conexão logaritmica entre entropia e probabilidadefoi estabelecida pela primeira vez por ele.
    No início do século XX, no entanto, átomos eram considerados por vários físicos estruturas puramente hipotéticas. Um marco importante foram os artigos de Albert Einstein(1905)[12] e Marian Smoluchowski (1906)[13] sobre o movimento browniano, que sucedeu certas previsões quantitativas precisas baseadas na teoria cinética.

    Princípios[editar | editar código-fonte]

    A teoria cinética dos gases pode ser aplicada apenas se algumas suposições forem feitas. A seguir os postulados da teoria cinética, a respeito dos gases perfeitos:
    • As moléculas estão se movendo em todas as direções.[2]
    • As moléculas se movem em linha reta entre as colisões.[2]
    • As colisões são perfeitamente elásticas.[2]
    • O diâmetro das moléculas é desprezível em comparação com a distância percorrida entre as colisões.[2]
    • Forças intermoleculares são desprezíveis, exceto durante as colisões.[2]
    • O tempo gasto durante a colisão é muito menor que o tempo gasto entre as colisões.[2]
    • Todos os gases são constituídos por um enorme número de esferas perfeitas, rígidas e extremamente pequenas.
    • O volume total ocupado pelas moléculas é desprezível se comparado ao volume do recipiente.
    • Estão constantemente em movimento aleatório e colidindo entre si e com as paredes do recipiente.
    • Quando as moléculas gasosas colidem com a parede do recipiente ocorre a transferência de momento, diretamente relacionado com a pressão do gás.
    • A energia cinética dos gases das moléculas é diretamente proporcional a temperatura do gás em kelvin.

    Uma visão molecular de pressão e temperatura[3][editar | editar código-fonte]

    Sejam n moles de um gás ideal armazenados numa caixa cúbica de aresta L e volume V, cujas paredes são mantidas à temperatura T.
    As moléculas na caixa se movem em todas as direções com velocidades variáveis, colidindo umas com as outras e com as paredes da caixa. Consideram-se apenas as suas colisões elásticas com as paredes da caixa. (Por enquanto as colisões entre as moléculas podem ser ignoradas.)
    A molécula tem massa m e velocidade v.
    Como as colisões entre a molécula e a parede são elásticas, quando a moléculas choca-se com a parede perpendicular ao eixo de coordenadas x (da caixa cúbica), a componente x da velocidade inverte seu sentido sem alterar seu módulo, enquanto as outras componentes permanecem inalteradas. Isto significa que a única mudança no momento linear da partícula é na direção x, e seu valor é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Logo, o momento linear  transmitido à parede pela molécula durante a colisão é (+2mvx).
    O tempo  entre as colisões é o tempo que a molécula leva para ir até a parede oposta e voltar (distância = 2L) com velocidade vx. Logo, a partícula choca-se com um lado específico da parede uma vez em cada
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    (Nota-se que este resultado é válido mesmo que a molécula se choque com qualquer das outras paredes durante o caminho, pois estas são paralelas ao eixo do x e, assim, não podem mudar vx.)
    Deste modo, a taxa com que o momento é transmitido à parede sombreada por esta única molécula é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Da segunda lei de Newton (F = dp/dt) a taxa com que o momento é transmitido à parede é a força atuando sobre esta. Para encontrar esta força, deve-se somar as contribuições de todas as outras moléculas que atingem a parede, levando em conta a possibilidade de que todas tenham velocidades diferentes. Dividindo a força total pela área da parede L², tem-se a pressão p sobre ela.
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde N é o número de moléculas na caixa.
    Como N = nNA, onde NA é o número de Avogadro, há nNA termos no segundo parênteses da equação acima. Assim podemos substituir esta quantidade por  , onde  é o valor médio do quadrado da componente x de todas as velocidades moleculares. A equações pode ser reescrita então
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Mas mNA é a massa molar M do gás. Além disso, L³ é o volume da caixa, logo,
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Para qualquer molécula, v² = vx² + vy² + vz². Como há muitas e como se movem em direções aleatórias, os valores médios dos quadrados das componentes de suas velocidades são iguais, logo,  , assim
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A raiz quadrada de  é uma espécie de velocidade média, chamada de velocidade média quadrática das moléculas, vrms.
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A equação acima ilustra bem o espírito da teoria cinética. Ela mostra que a pressão de um gás p (uma quantidade puramente macroscópica) depende da velocidade das moléculas (uma quantidade puramente microscópica). Podemos relacionar a equação mostrada com a equação do gás ideal (pV = nRT) (sendo R a constante dos gases).
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Energia cinética de translação[3][editar | editar código-fonte]

    Considera-se uma molécula em movimento dentro de uma caixa cúbica, sua velocidade muda (em módulo) quando colide com outras moléculas. A energia cinética de translação da molécula em qualquer instante é  . A energia cinética de translação média, onde tomamos a média sobre o tempo em que observamos a molécula, é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde é feita a suposição de que a velocidade média da molécula é a mesma que a velocidade média de todas as moléculas em qualquer instante. (Esta suposição é apropriada desde que a energia total do gás permaneça constante e que a molécula seja observada por um tempo suficientemente longo.)
    Dado que  podemos reescrever a equação e verificar que
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Mas  , a massa molar dividida pela massa de uma molécula, é o número de Avogadro NA, assim
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Que pode ser reescrito como
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A constante k, chamada de constante de Boltzmann, é a razão entre a dos gases perfeitos R e o número de Avogadro NA.
    Seu valor é












    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    segunda-feira, 1 de abril de 2019



    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    Em físicapotência é a grandeza que determina a quantidade de energia concedida por uma fonte a cada unidade de tempo. Em outros termos, potência é a rapidez com a qual uma certa quantidade de energia é transformada ou é a rapidez com que o trabalho é realizado. Potência também pode ser entendida como sendo a força multiplicada pela velocidade.[1]
    Em outros ramos, como na engenharia, a compreensão sobre o assunto potência é de grande relevância, dado que quando um engenheiro vai projetar uma máquina, na ótica da engenharia, é importante definir o tempo mínimo no qual a maquina irá produzir trabalho, dando assim maior credibilidade do que se apenas a quantidade de trabalho que ela poderá realizar fosse especificada.[1]

      Fórmula

      A potência P é dada por  Onde W = trabalho realizado
      t = tempo com que se executa o trabalho.
      Variação de energia é a energia que mudou de natureza ou transitou para outro local.
      A variação de energia recebe diversos nomes, quando se refere a tipos específicos de energia:
      • Trabalho (): é a energia consumida ao longo de um percurso ()
      Potência: sabendo a força aplicada (constante) e a velocidade da partícula
      • Quantidade de Calor (): é a variação da energia térmica ().
      • Potência instantânea: como enfatizado anteriormente, é de crucial importância conhecer a taxa com que o trabalho realizado. Assim a potência instantânea pode ser definida como a taxa de variação instantânea com a qual o trabalho é realizado, podendo ser escrita como: .[1].

      Potência e energia[editar | editar código-fonte]

      Potência pode estar relacionado a qualquer processo em que haja fluxo de energia. Em um sistema no qual se fornece (ou recebe) energia , em um intervalo de tempo , a potência média fornecida(ou recebida) pelo sistema pode ser dado por: [2]










      teoria da relatividade categorial Graceli

      ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D











      NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      terça-feira, 2 de abril de 2019


      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Um gás ideal ou perfeito pode ser compreendido como um conjunto de moléculas ou átomos que estão em movimento constante e aleatório, cujas velocidades médias estão relacionadas com a temperatura - quanto maior a temperatura do sistema, maior a velocidade média das moléculas. Um gás se difere de um líquido pelo fato de as moléculas estarem mais afastadas, exceto no momento em que elas sofrem colisões. Outra diferença é que o movimento de suas trajetórias é muito pouco perturbado pelas forças intermoleculares. [1] O conceito de gás ideal é útil porque obedece a lei dos gases ideais, uma equação de estado simplificada, e é passível de análise pela mecânica estatística[2]. A Lei dos Gases Ideais relaciona as variáveis de estado: temperatura, pressão, volume e número de mols, o que permite determinar o valor de uma variável quando se conhece as outras três. Um gás ideal é composto de partículas puntiformes (tamanho desprezível, considerando que seus diâmetros são muito menores que as distâncias médias percorridas), e precisa estar na condição de baixa pressão (falta de interações). Considerando os três estados físicos da matéria, apenas o estado gasoso permite, comparativamente, uma descrição quantitativa simples. [3]
      Em condições ambientais normais tais como as temperatura e pressão padrão, a maioria dos gases reais comportam-se como um gás ideal[2]. Geralmente, desvios de um gás ideal tendem a diminuir com mais alta temperatura e menor densidade, como o trabalho realizado por forças intermoleculares tornando-se menos significativas comparadas com a energia cinética das partículas, e o tamanho das moléculas torna-se menos significativo comparado ao espaço vazio entre elas[2].
      O modelo do gás ideal tende a falhar em mais baixas temperaturas ou mais altas pressões, quando forças intermoleculares e o tamanho molecular tornam-se importantes. Em algum ponto de baixa temperatura e alta pressão, gases reais atravessam uma transição de fase, tais como um líquido ou um sólido. O modelo de um gás ideal, entretanto, não descreve ou permite transições de fases. Estes devem ser modelados por equações de estado mais complexas.
      O modelo do gás ideal tem sido explorado tanto na dinâmica Newtoniana (como na "teoria cinética") e em mecânica quântica (como um "gás em uma caixa"). O modelo de gás ideal tem sido também usado para modelar o comportamento de elétrons em um metal (no modelo de Drude e no modelo do elétron livre), e é um dos mais importantes modelos em mecânica estatística.

        Tipos de gases ideais

        Existem três classes básicas de gases ideais:
        O gás ideal clássico pode ser separado em dois tipos: O gás ideal termodinâmico clássico e o gás ideal quântico de Boltzmann. Ambos são essencialmente o mesmo, exceto que o gás ideal termodinâmico é baseado na mecânica estatística clássica , e certos parâmetros tais como a entropia são somente especificados dentro de uma constante aditiva indeterminada. O gás ideal quântico de Boltzmann supera esta limitação, tomando o limite do gás quântico de Bose e o gás quântico de Fermi no limite de alta temperatura para especificar estas constantes aditivas. O comportamento de um gás quântico de Boltzmann é o mesmo que de um gás ideal clássico, exceto para a especificação destas constantes. Os resultados do gás quântico de Boltzmann são utilizados num certo número de casos, incluindo a equação de Sackur-Tetrode para a entropia de um gás ideal e a equação de ionização Saha para um plasma fracamente ionizado.

        Gás ideal simples[editar | editar código-fonte]

        Um gás ideal simples pode ser completamente caracterizado apenas pelos seguinte parâmetros macroscópicos: energia interna, volume e número de moles de seus constituintes.

        Um gás ideal simples é caracterizado por duas equações:
        Onde:
        •  é uma constante,
        •  é a constante universal dos gases (),
        •  é a energia interna do sistema,
        •  é o número de moles dos componestes químicos,
        •  é a tempetatura do sistema.
        Gases compostos de átomos monoatômicos não interagentes (tais como He, Ar, Ne) satisfazem essas equações em temperaturas tais que  seja pequeno quando comparado com as energias de excitação eletrônica e em pressões baixas ou moderadas. Para tais gases ideais monoatômicos .

        Leis que regem os gases ideais termodinâmicos clássicos[editar | editar código-fonte]

        Um gás ideal termodinâmico clássico obedece às seguintes leis:
        LeiPub.CondiçõesEnunciado
        Lei de Boyle-Mariotte1662
        Lei de Charles1802
        Lei de Gay-Lussac1809
        Lei de Avogadro1811Substância pura
        Onde:
         representa a pressão
         representa o volume
         representa a temperatura termodinâmica
         representa a quantidade de gás
         representa a massa

        Equação de Clapeyron[editar | editar código-fonte]

        Unificando todos os enunciados obtemos que:
        Essa relação define a constante dos gases perfeitos () que vale 8,314 J·K−1mol−1 para todos os gases perfeitos. Daí vem a equação de estado dos gases perfeitos, conhecida como equação de Clapeyron:
        O nome dessa formulação é uma referência a Benoît Paul-Émile Clapeyron.

        Relação com a realidade[editar | editar código-fonte]

        Ver artigo principal: Gás real
        Um gás real tende a se comportar como ideal quando o fator de compressibilidade () tende a um, ou seja, quando a pressão é baixa e a temperatura é alta, para que a distância entre as moléculas seja a maior possível. Nessas condições, os choques entre as moléculas se tornam praticamente elásticos, havendo pouca perda de energia cinética.
        Podemos perceber que a equação não faz nenhuma referência ao tipo de molécula de gás. A consequência desse fato é a que a equação é incapaz de prever os efeitos das interações intermoleculares. Porque se duas moléculas com grande interação intermolecular se cruzam próximas uma da outra existe uma força de atração, diminuindo a energia cinética, o que diminuiria a pressão total do sistema em relação ao esperado no caso de não haver tal interação. Por isso é preciso que o sistema esteja em alta temperatura e baixa pressão.
        No primeiro caso, com a temperatura alta, a alta energia cinética faz com que os choques entre as moléculas sejam quase elásticos, e quando elas se aproximam a interação seja por um momento curto e a interação acaba não sendo o suficiente para mudar a trajetória das partículas no gás. É como se fosse um foguete passando próximo da superfície de um planeta. Se a velocidade for baixa ele será aprisionado pelo enorme campo gravitacional, mudando de trajetória e se chocando com o planeta, o que diminuiria sua energia cinética. Se a velocidade for suficientemente alta ele passará sem grandes mudanças.
        No segundo caso, com a baixa pressão, as moléculas estão muito afastadas. E como a interação depende fortemente da distância das partículas, grandes distâncias fazem com que o efeito de interação seja praticamente desprezível.











        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        sábado, 30 de março de 2019






        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D



        X = KP
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D



        Solubilidade ou coeficiente de solubilidade (CS) é a quantidade máxima que uma substância pode se dissolver em um líquido, e expressa-se em mols por litro, gramas por litro ou em percentagem de soluto/solvente. Esse conceito também se estende para solventes sólidos.
        Na solubilidade, o caráter polar ou apolar de uma substância influi principalmente, pois devido à polaridade, estas substâncias serão mais ou menos solúveis. Dessa forma, substâncias polares tendem a se dissolver em líquidos polares e substâncias apolares, em líquidos apolares.
        Os compostos com mais de um grupo funcional apresentam grande polaridade, por isso não são solúveis em éter etílico, por exemplo, que apresenta baixíssima polaridade. Portanto, para que uma substância seja solúvel em éter etílico deve apresentar pouca polaridade. Os compostos com menor polaridade são os que apresentam menor reatividade como, por exemplo, as parafinas, compostos núcleos aromáticos e os derivados halogenados.
        O termo solubilidade designa tanto fenômeno qualitativo do processo (dissolução), como expressa quantitativamente a concentração das soluções. A solubilidade de uma substância depende da natureza do soluto e do solvente, assim como da temperatura e da pressão às quais o sistema é submetido. É a tendência do sistema em alcançar o valor máximo de entropia.
        Ao misturar um soluto com um solvente, pode haver a formação de três tipos de soluções: saturada, solução insaturada ou solução supersaturada, cada uma delas dependendo da quantidade de soluto que se dissolveu no solvente.
        O processo de interação entre as moléculas do solvente e as moléculas do soluto para formar agregados é denominado solvatação e, se o solvente for a água, hidratação.

          Definição IUPAC

          De acordo com uma definição da IUPAC[nota 1] , é a solubilidade da composição analítica de uma solução saturada expressa como uma proporção de um soluto designada no seio de um solvente determinado. A solubilidade pode ser definida em unidades de concentração, molalidade, fração molar, razão molar, e de outras unidades.

          Solubilidade gases[editar | editar código-fonte]

          Os gases, em geral, são pouco solúveis em líquidos. Existem, porém, dois fatores que alteram sua solubilidade: a pressão e a temperatura . A influência da pressão sobe um líquido pode ser enunciada pela Lei de Henry: “Em temperatura constante, a solubilidade de um gás em um líquido é diretamente proporcional à pressão parcial do gás acima do líquido.”
          Essa lei se aplica somente em certas condições, nas quais a concentração do soluto e sua pressão parcial são relativamente baixas, ou seja, quando o gás e a solução são ideais e quando não ocorre interação entre o soluto e o solvente.
          A lei de Henry pode ser expressa da seguinte forma:
          onde:
           fração molar de líquido do gás em solução (é a solubilidade do gás);
           pressão parcial na fase gasosa;
           constante de proporcionalidade (ou constante de Henry);
          Cada gás tem sua própria constante , que varia com a temperatura. Um exemplo disso ocorre quando se abre uma garrafa de refrigerante: a pressão é reduzida, acarretando a diminuição da solubilidade de CO2, que é liberado na forma de bolhas.
          Em termos de temperatura, a solubilidade dos gases em líquidos diminui com o aumento da temperatura, fazendo aumentar o grau de agitação das moléculas, havendo a liberação das moléculas de gás do líquido.
          Esse efeito é percebido quando água muito quente é lançada em rios que possuem alta biodiversidade: a temperatura elevada reduz a solubilidade do  na água dos rios, acarretando uma grande mortandade de espécies locais.

          Solubilidade de compostos orgânicos[editar | editar código-fonte]

          Quando consideramos a solubilidade de compostos orgânicos entre si e com a água devemos levar em consideração a polaridade, as forças de atração intermolecular e o tamanho da cadeia carbônica. Há uma tendência de substâncias polares dissolverem substâncias polares e substâncias apolares dissolverem substâncias apolares, ou seja, semelhante dissolve semelhante, mas há exceções a essa regra. Assim, a maioria dos compostos orgânicos é insolúvel ou pouco solúvel em água, porque a maioria é apolar e a água é um composto polar.
          Outro fator importante para analisar a solubilidade são as forças intermoleculares. Quando essas forças estabelecidas entre soluto e solvente são mais fortes ou iguais às estabelecidas entre as moléculas do próprio solvente e entre as do próprio soluto, a tendência de dissolução aumenta. Quanto maior essa diferença de força, maior a solubilidade.
          Analisando o caso do etanol, vemos que ele é infinitamente solúvel na água, mas também dissolve materiais apolares, como, por exemplo, a gasolina. Isso deve-se ao fato de haver na molécula do etanol uma parte polar (formada pela hidroxila) e uma parte apolar, que é responsável por dissolver bem os compostos orgânicos, caracterizando-o com um composto anfipático. Os açúcares possuem boa dissolução na água, pois possuem hidroxilas na fórmula. Já o óleo de cozinha possui solubilidade muito pequena, pois é apolar. As moléculas de óleo se agrupam por interações dipolo instantâneo - dipolo induzido e as da água por pontes de hidrogênio, que são ligações muito mais fortes que às do óleo. Logo, as moléculas de óleo não conseguem penetrar entre as de água.
          Outro fator importante é o tamanho da cadeia carbônica. Quanto maior a parte apolar carbônica menos solúvel é o composto orgânico. É por isso que o ácido acético é mais solúvel que o ácido caproico. Os dois possuem uma carboxila, mas o ácido caproico possui uma parte hidrofóbica maior.
          Outro ponto importante a considerar é a tendência de o soluto se cristalizar quando o solvente evapora ou quando a temperatura da solução diminui, sendo que a cristalização de uma substância iônica é mais fácil, pois os íons se atraem eletricamente , se comparado à atração entre moléculas. A cristalização dos compostos orgânicos é, em geral, lenta e demorada e alguns compostos nem se cristalizam, como a parafina. [1]

          Classificação de compostos orgânicos pela solubilidade[editar | editar código-fonte]

          Deduções com base em interpretação de testes de solubilidade simples pode ser extremamente útil na determinação da estrutura orgânica.Ambos, solubilidade e análises espectrométricas muitas vezes levam para os mesmos tipos de dedução estrutural.
          Solubilidade envolve
          • A formação de uma camada, se os compostos são miscíveis, ou
          • A formação de duas camadas, caso os componentes sejam imiscíveis.
          A solubilidade de compostos orgânicos pode ser dividida em duas categorias principais:
          • Solubilidade em que uma reação química é a força motriz
          • Solubilidade em que a miscibilidade simples é o único mecanismo envolvido, tal como a dissolução de éter etílico  em tetracloreto de carbono .
          O teste da solubilidade de uma substância orgânica é realizada em água,  5%,  a 5%,  5% Fria,  concentrado. Uma substância é considerada "solúvel" se dissolve na medida de 3,3 g/100 ml de solvente.
          Esses testes podem fornecer três tipos de informação:
          • A presença de um grupo funcional.Por exemplo, como os hidrocarbonetos são insolúveis em água, observando-se que uma amostra desconhecida é parcialmente solúvel em água indica que um grupo funcional polar está presente.
          • Solubilidade em alguns solventes muitas vezes leva a informações mais específicas sobre o grupo funcional.
          • Certas deduções sobre tamanho molecular e composição podem, por vezes, ser feita a partir de testes de solubilidade. Por exemplo, a solubilidade em  5% de um desconhecido insolúvel em água, é uma forte indicação de um grupo acídico funcional.
          Na série homóloga de muitos compostos monofuncionais, os membros com menos de cerca de 5 átomos de carbono são solúveis em água, enquanto que os seus homólogos superiores são insolúveis.

          Solubilidade em Água[editar | editar código-fonte]

          • Água é um solvente fraco para os hidrocarbonetos.
          presença de ligações duplas, ligações triplas ou anéis aromáticos não afeta muito a polaridade - semelhante ao alcanos em sua solubilidade.
          halogêneo substituindo um hidrogénio diminui a solubilidade na água.
          Sais são extremamente polar e são geralmente solúveis em água.
          ácidos e aminas são mais solúveis do que os compostos não polar(devido à ligação de H-).
          Solubilidade de aminas diminui à medida que a basicidade diminui.
          Muitas aminas terciárias são mais solúveis em água fria do que em água quente (a temperaturas mais baixas, a solubilidade dos hidratos está envolvida).

          Solubilidade para soluções iônicas[editar | editar código-fonte]

          Definindo um sal como um composto que, em solução, se dissocia em um cátion diferente do H+ e um ânion diferente do OH-.
          Um sal solúvel é aquele que faz parte de uma solução mais concentrada que 0,01M. Um sal insolúvel apresenta uma solubilidade muito menor do que 0,01M.
          Abaixo segue uma tabela das regras dos sais solúveis e insolúveis:
          Sais formados por:Motivo:Características:Exceções:
          Sais Essencialmente SolúveisÂnions .São íons grandes de carga única, sendo de fácil dissociação.Temos aqui sólidos de alto ponto de fusão e alta solubilidade.
          -
          Ânions  e .Estes ânios de carga única são menores do que os anteriores citados e apresentam interações mais fortes com os cátions em seus sólidos, sendo de menor dissociação que os acima.Pontos de fusão mais elevados e solubilidade um pouco menor.Sais cujo cátion é  ou .
          Ânions .Íon grande, porém carga dupla, seus sais são geralmente menos solúveis do que os de .
          -
          Sais cujo cátion é  ou . Os sais  e  são poucos solúveis.
          Cátions  e .Estes íons são fortementes hidratados e possuem apenas uma carga.
          -
          Os sais de sódio geralmente são mais solúveis do que os de potássio, e os de lítiosão os mais solúveis de todos. O íon complexo  forma sais insolúveis com  e .
          Sais Essencialmente InsolúveisOs hidróxidos são insolúveis, exceto os de sódiopotássioamônio e bário.O íon hidroxila é um caso especial.Trata-se se um íon relativamente pequeno;mas, em sólidos, o  geralmente substitui duas hidroxilas com perda de água.
          -
          Diferentemente do comportamento dos correspondentes sulfatados, o hidróxido de bário é mais solúvel do que o hidróxido de cálcio, que é pouco solúvel.
          Carbonatos:  Fosfatos :Os íons carbonato e fosfato são ânios de carga múltiplas, o que os tornam pouco solúvel.Os íons  e  são tão básicos que seus sais costumas apresentar quantidades variáveis de .Os sais formados pelos cátions  e .Se os íons forem protonados, para formar , seus sais serão solúveis.
          Sulfetos: Devido a grande eletronegatividade do sulfeto.O íon  apresenta uma afinidade tão grande por  que chega a formar  insolúvel em soluções básicas, em vez de ligar-se ao sulfeto.Os sais cujo cátion é  e .

          Fatores que afetam a solubilidade[editar | editar código-fonte]

          Temperatura[editar | editar código-fonte]

          De acordo com o princípio de Le Châtelier,é possível alterar um equilíbrio químico por meio da mudança de temperatura. Tal mudança depende do processo de dissolução, ou seja, se o processo é endotérmico ou exotérmico. Na situação em que há um processo endotérmico, um aumento na temperatura altera o equilíbrio para a direita, como observado na equação:
          calor + solvente + soluto  solução (H>0)
          Na situação em que há um processo exotérmico, um aumento na temperatura altera o equilíbrio para a esquerda, como observado na equação:
          soluto + solvente  solução + calor (H<0)
          O aumento da temperatura no caso endotérmico favorece a solução e, assim, aumenta a solubilidade. Já, o aumento da temperatura no caso exotérmico favorece o soluto não-dissolvido e, assim, reduz o valor da solubilidade.
          Em relação a gases, como o H é geralmente menor que zero, a solubilidade destes normalmente reduz-se com a temperatura. Porém, trata-se de um comportamento mais complexo. À medida em que a temperatura é elevada, geralmente gases tornam-se menos solúveis em água (no mínimo, o que é abaixo de 120 °C para a maioria dos gases), porém, são mais solúveis em solventes orgânicos. Para diversos sólidos dissolvidos na água no estado líquido, a solubilidade aumenta com a temperatura a por volta de 100 °C. [4] No estado líquido, a água, em altas temperaturas, (por exemplo, que se aproxima da temperatura crítica), o grau de solubilidade de solutos iônicos tende a diminuir em direção a mudança de propriedades e estruturas de água líquida.
          SolubilityVsTemperature.png
          Alguns sais comportam-se de forma diferenciada, como os casos onde a solubilidade independe praticamente da temperatura, ou seja, cresce muito pouco, como é o caso do  (cloreto de sódio). Alguns deles, tais como o sulfato de cério (III), tornam-se menos solúveis em água, como o aumento da temperatura. Esta dependência da temperatura é muitas vezes referida como "retrógrada" ou como solubilidade "inversa".

          Pressão[editar | editar código-fonte]

          A relação entre a solubilidade de sólidos e líquidos em solventes líquidos e a pressão é de quase independência. Segundo o princípio de Le Châtelier, uma elevação na pressão acarretaria num aumento de solubilidade se o volume da solução fosse menor do que o volume dos componentes antes da mistura, porém, a alteração de volume que acompanha o processo de dissolução é determinada a partir da densidade, mas ela é insignificante, fazendo com que o efeito da pressão é quase dispensá assumindo uma solução ideal, a dependência poderia ser quantificado como:
          onde o índice  representa os componentes,  é a fração molar do componente , na solução,  é a pressão, o índice  refere-se a temperatura constante,  volume molar parcial do componente  solução,  é o volume molar parcial do componente  no sólido dissolvendo-se, e  é a Constante universal dos gases perfeitos.[5]

          Lei de Henry[editar | editar código-fonte]

          Diz respeito a solubilidade de um gás dissolvido em um liquido, que, quando nesse estado, é proporcional à pressão parcial do gás acima do líquido. Tal lei pode ser descrita como
          X = KP
          onde  é a fração molar de equilíbrio do gás na solução, ou seja, sua solubilidade,  é a pressão parcial na fase gasosa e  é a constante de proporcionalidade (constante da lei de Henry). A lei de Henry aplica-se apenas somente em situações onde a concentração do soluto e a sua pressão parcial são baixas.
          Valores da constante da lei de Henry em água:
          GásOºC20ºC40ºC
          1,721,461,31
          1,861,321,00
          3,982,581,85















          teoria da relatividade categorial Graceli

          ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D











          NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


          Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


          Estados térmico.
          Estado quântico.
          De dilatação.
          De entropia.
          De potencia de entropia e relação com dilatação.
          De magnetismo [correntes, momentum e condutividades]..
          De eletricidade [correntes, momentum e condutividades].
          De condutividade.
          De mometum e fluxos variados.
          De potencial inercial da matéria e energia.
          De transformação.
          De comportamento de cargas e interações com elétrons.
          De emaranhamentos e transemaranhamentos.
          De paridades e transparidades.
          De radiação.
          Radioatividade.
          De radioisótopos.
          De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
          De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

          De resistir à temperaturas.
          E transformar em dilatação, interações entre partículas, energias e campos.
          Estado dos padrões de variações e efeitos variacionais.
          Estado de incerteza dos fenômenos e entre as suas interações.


          E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


          E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



          Sobre padrões de entropia.

          Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


          Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


          Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


          A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


          Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


          Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


          Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


          Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


          Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


          Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


          Princípio tempo instabilidade de Graceli.

          Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


          Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


          as dimensões categorias podem ser divididas em cinco formas diversificadas.

          tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



          paradox of the system of ten dimensions and categories of Graceli.



          a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



          that is, categories ground the variables of phenomena and their interactions and transformations.



          and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



          but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



          as well as transitions of energies, phenomena, categories and dimensions.

          paradoxo do sistema de dez dimensões e categorias de Graceli.

          um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

          ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

          e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

          mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

          como também transições de energias, fenômenos, categorias e dimensões.







           = entropia reversível

          postulado categorial e decadimensional Graceli.

          TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


          todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
          matriz categorial Graceli.

          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          1] Cosmic space.
          2] Cosmic and quantum time.
          3] Structures.
          4] Energy.
          5] Phenomena.
          6] Potential.
          7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
          8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
          9] thermal specificity, other energies, and structure phenomena, and phase transitions.
          10] action time specificity in physical and quantum processes.




          Sistema decadimensional Graceli.

          1]Espaço cósmico.
          2]Tempo cósmico  e quântico.
          3]Estruturas.
          4]Energias.
          5]Fenômenos.
          6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
          7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
          8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
          9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
          10] especificidade de tempo de ações em processos físicos e quântico.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          Matriz categorial de Graceli.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   Dl


          Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

          [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
          trans-intermecânica de supercondutividade no sistema categorial de Graceli.

          EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

          p it = potentials of interactions and transformations.
          Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

          h e = quantum index and speed of light.

          [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


          EPG = GRACELI POTENTIAL STATUS.

          [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

          , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

          Comentários

          Postagens mais visitadas deste blog

          TEORIAS E FILOSOFIAS DE GRACELI 18